## How do you interpret R-squared?

The most common interpretation of r-squared is how well the regression model fits the observed data. For example, an r-squared of 60% reveals that 60% of the data fit the regression model. Generally, a higher r-squared indicates a better fit for the model.

## What does R-squared linear regression mean?

R-squared is a goodness-of-fit measure for linear regression models. This statistic indicates the percentage of the variance in the dependent variable that the independent variables explain collectively. After fitting a linear regression model, you need to determine how well the model fits the data.

**What does a negative R2 value mean?**

An R2 of 0 means your regression is no better than taking the mean value, i.e. you are not using any information from the other variables. A Negative R2 means you are doing worse than the mean value.

**Is a high R-squared good or bad?**

In general, the higher the R-squared, the better the model fits your data.

### What is a good R-squared value for a trendline?

Trendline reliability A trendline is most reliable when its R-squared value is at or near 1.

### What if R-squared is low?

A low R-squared value indicates that your independent variable is not explaining much in the variation of your dependent variable – regardless of the variable significance, this is letting you know that the identified independent variable, even though significant, is not accounting for much of the mean of your …

**Is negative R2 bad?**

If the chosen model fits worse than a horizontal line, then R2 is negative. Note that R2 is not always the square of anything, so it can have a negative value without violating any rules of math. R2 is negative only when the chosen model does not follow the trend of the data, so fits worse than a horizontal line.

**How do you interpret a negative r squared?**

R square can have a negative value when the model selected does not follow the trend of the data, therefore leading to a worse fit than the horizontal line. It is usually the case when there are constraints on either the intercept or the slope of the linear regression line.